Search results for "aerobic respiration"

showing 10 items of 15 documents

Requirement for the Proton-Pumping NADH Dehydrogenase I of Escherichia Coli in Respiration of NADH to Fumarate and Its Bioenergetic Implications

1997

In Escherichia coli the expression of the nuo genes encoding the proton pumping NADH dehydrogenase I is stimulated by the presence of fumarate during anaerobic respiration. The regulatory sites required for the induction by fumarate, nitrate and O2 are located at positions around –309, –277, and downstream of –231 bp, respectively, relative to the transcriptional-start site. The fumarate regulator has to be different from the O2 and nitrate regulators ArcA and NarL. For growth by fumarate respiration, the presence of NADH dehydrogenase I was essential, in contrast to aerobic or nitrate respiration which used preferentially NADH dehydrogenase II. The electron transport from NADH to fumarate …

Anaerobic respirationAcetatesmedicine.disease_causeBiochemistryElectron TransportFumaratesEscherichia colimedicineDimethyl SulfoxideNADH NADPH OxidoreductasesAnaerobiosisEscherichia colichemistry.chemical_classificationElectron Transport Complex IEthanolbiologyNADH dehydrogenaseGene Expression Regulation BacterialProton PumpsElectron acceptorFumarate reductaseNADElectron transport chainGlycerol-3-phosphate dehydrogenaseBiochemistrychemistryElectron Transport Complex Ibiology.proteinEnergy MetabolismEuropean Journal of Biochemistry
researchProduct

Transport of C(4)-dicarboxylates in Wolinella succinogenes.

2000

ABSTRACT C 4 -dicarboxylate transport is a prerequisite for anaerobic respiration with fumarate in Wolinella succinogenes , since the substrate site of fumarate reductase is oriented towards the cytoplasmic side of the membrane. W. succinogenes was found to transport C 4 -dicarboxylates (fumarate, succinate, malate, and aspartate) across the cytoplasmic membrane by antiport and uniport mechanisms. The electrogenic uniport resulted in dicarboxylate accumulation driven by anaerobic respiration. The molar ratio of internal to external dicarboxylate concentration was up to 10 3 . The dicarboxylate antiport was either electrogenic or electroneutral. The electroneutral antiport required the prese…

Anaerobic respirationAntiporterPhysiology and MetabolismMutantMalatesBiologymedicine.disease_causeMicrobiologyCell membraneElectron TransportOxygen ConsumptionBacterial ProteinsFumaratesRespirationmedicineDicarboxylic AcidsAnaerobiosisMolecular BiologyEscherichia coliDicarboxylic Acid TransportersAspartic AcidNitratesEscherichia coli ProteinsCell MembraneSodiumMembrane ProteinsBiological TransportSuccinatesFumarate reductaseElectron transport chainWolinellamedicine.anatomical_structureBiochemistryMutagenesisCarrier ProteinsGene DeletionJournal of bacteriology
researchProduct

Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate

1995

In Bacillus macerans, anaerobic respiratory pathways and the regulation of facultatively anaerobic catabolism by electron acceptors were analysed. In addition to fermentative growth, B. macerans was able to grow anaerobically by fumarate, trimethylamine N-oxide, nitrate, and nitrite respiration with glycerol as donor. During growth by fumarate respiration, a membrane-bound fumarate reductase was present that was different from succinate dehydrogenase. The end product of nitrate and nitrite respiration was ammonia. No N2 or NO and only traces of N2O could be detected. O2 repressed the activity of nitrate and fumarate reductases and the fermentation of glucose, presumably at the transcription…

Anaerobic respirationCellular respirationGeneral MedicineFumarate reductaseNitrate reductaseNitrite reductaseBiochemistryMicrobiologychemistry.chemical_compoundchemistryNitrateBiochemistryGeneticsFermentationNitriteMolecular BiologyArchives of Microbiology
researchProduct

Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors

1997

AbstractThe electron-transport chains of Escherichia coli are composed of many different dehydrogenases and terminal reductases (or oxidases) which are linked by quinones (ubiquinone, menaquinone and demethylmenaquinone). Quinol:cytochrome c oxido-reductase (`bc1 complex') is not present. For various electron acceptors (O2, nitrate) and donors (formate, H2, NADH, glycerol-3-P) isoenzymes are present. The enzymes show great variability in membrane topology and energy conservation. Energy is conserved by conformational proton pumps, or by arrangement of substrate sites on opposite sides of the membrane resulting in charge separation. Depending on the enzymes and isoenzymes used, the H+/e− rat…

Anaerobic respirationTranscription GeneticCellular respirationFNRBiophysicsBiochemistryElectron TransportOxygen sensorOxygen ConsumptionBacterial Proteins(Escherichia coli)Escherichia coliProtein phosphorylationAnaerobiosischemistry.chemical_classificationbiologyCytochrome cQuinonesArcAGene Expression Regulation BacterialCell BiologyElectron acceptorElectron transport chainAerobiosisAerobic electron transportResponse regulatorAnaerobic electron transportBiochemistrychemistrybiology.proteinCarrier ProteinsEnergy MetabolismOxidoreductasesFlux (metabolism)RegulationBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Start-up and Operation of Laboratory-Scale Thermophilic Upflow Anaerobic Sludge Blanket Reactors Treating Vegetable Processing Wastewaters

1997

Thermophilic anaerobic treatment of hot vegetable processing wastewaters was studied in laboratory-scale UASB reactors at 55°C. The high-strength wastewater streams, deriving from steam peeling and blanching of carrot, potato and swede were used. The reactors were inoculated with mesophilic granular sludge. Stable thermophilic methanogenesis with about 60% COD removal was reached within 28 days. During the 134 day study period the loading rate was increased up to 24 kg COD m−3 day−1. High treatment efficiency of more than 90% COD removal and concomitant methane production of 7·3 m3 CH4 m−3 day−1 were achieved. The anaerobic process performance was not affected by the changes in the wastewat…

Anaerobic respirationWaste managementFood industryRenewable Energy Sustainability and the Environmentbusiness.industryMethanogenesisBlanchingGeneral Chemical EngineeringThermophileOrganic ChemistryBlanketPollutionInorganic ChemistryFuel TechnologyWastewaterEnvironmental sciencebusinessWaste Management and DisposalBiotechnologyMesophileJournal of Chemical Technology & Biotechnology
researchProduct

Energy Transduction in Anaerobic Bacteria

2013

Anaerobic or facultatively anaerobic bacteria are able to grow in the absence of molecular oxygen by fermentation, anaerobic respiration, anoxygenic photosynthesis, and some other membrane-dependent reactions. Fermentation uses substrate-level phosphorylation for adenosine diphosphate phosphorylation, whereas the other processes rely on the formation of a H + or Na + potential over the membrane and a membrane-potential-driven ATP synthase. In growth reactions providing only a small free energy change, the latter reactions and use of a membrane potential is the preferred mechanism for energy conservation. Fermentation reactions supply products of biotechnological interest like short chain fa…

Cellular waste productAnaerobic respirationBiochemistryCellular respirationAnaerobic glycolysisAnaerobic oxidation of methaneFermentationAnaerobic bacteriaBiologyElectron transport chain
researchProduct

Transcriptional regulation and energetics of alternative respiratory pathways in facultatively anaerobic bacteria

1998

Abstract The facultatively anaerobic Escherichia coli is able to grow by aerobic and by anaerobic respiration. Despite the large difference in the amount of free energy that could maximally be conserved from aerobic versus anaerobic respiration, the proton potential and Δg ′ Phos are similar under both conditions. O 2 represses anaerobic respiration, and nitrate represses fumarate respiration. By this the terminal reductases of aerobic and anaerobic respiration are expressed in a way to obtain maximal H + e − ratios and ATP yields. The respiratory dehydrogenases, on the other hand, are not synthesized in a way to achieve maximal H + e − ratios. Most of the dehydrogenases of aerobic respirat…

Cellular waste productAnaerobic respirationFumarate nitrate reductase regulatorCellular respirationAerobic and anaerobic respirationBiophysicsO2-sensingRegulation of energeticsProton potentialCell BiologyBiologyFumarate reductasemedicine.disease_causeObligate aerobeBiochemistryTranscriptional regulationBiochemistrymedicineAnaerobic bacteriaAnaerobic exerciseEscherichia coliBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation.

1998

The energetic parameters of Escherichia coli were analyzed for the aerobic/anaerobic transition. The electrochemical proton potential (delta p) across the cytoplasmic membrane was determined in the steady state of respiration with O2, nitrate, fumarate, dimethylsulfoxide (Me2SO), and for fermentation. With O2, a proton potential of -160 mV was obtained. For anaerobic respiration with nitrate, fumarate or Me2SO, delta p decreased only slightly by about 20 mV in contrast to earlier assumptions, whereas delta p dropped by approximately 40 mV during fermentation. Under all conditions, the membrane potential (delta psi) contributed the major portion to delta p. The cellular ATP levels were highe…

DeltaCellular waste productAnaerobic respirationBiologymedicine.disease_causeObligate aerobeBiochemistryAerobiosisMembrane PotentialsAdenosine DiphosphateAdenosine TriphosphateBiochemistryRespirationFermentationmedicineBiophysicsEscherichia coliFermentationAnaerobiosisPhosphorylationProtonsEnergy MetabolismAnaerobic exerciseEscherichia coliEdetic AcidEuropean journal of biochemistry
researchProduct

A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects

2018

[EN] The use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects. Quantitative environmental and economic evaluation has demonstrated substantial advantages in application of AnMBR to domestic wastewater treatment, but detailed modelling is less mature. While anaerobic process modelling is generally mature, more work is needed on integrated models which include coupling between membrane performance (including fouli…

Environmental EngineeringAnaerobic respirationControl aspectsProcess (engineering)0208 environmental biotechnologyAnaerobic Membrane Bioreactor (AnMBR)HydraulicsBioengineering02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesModellingWater PurificationBioreactors[CHIM.GENI]Chemical Sciences/Chemical engineeringControlBioreactor[CHIM]Chemical SciencesAnaerobiosisWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesFoulingRenewable Energy Sustainability and the EnvironmentGeneral MedicineFouling6. Clean water020801 environmental engineeringMembraneEnvironmental scienceSewage treatmentBiochemical engineeringAnaerobic exercise
researchProduct

Regulatory O 2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration

1997

In an oxystat, the synthesis of the fermentation products formate, acetate, ethanol, lactate, and succinate of Escherichia coli was studied as a function of the O2 tension (pO2) in the medium. The pO2 values that gave rise to half-maximal synthesis of the products (pO0. 5) were 0.2-0.4 mbar for ethanol, acetate, and succinate, and 1 mbar for formate. The pO0.5 for the expression of the adhE gene encoding alcohol dehydrogenase was approximately 0.8 mbar. Thus, the pO2 for the onset of fermentation was distinctly lower than that for anaerobic respiration (pO0.5/= 5 mbar), which was determined earlier. An essential role for quinol oxidase bd in microaerobic growth was demonstrated. A mutant de…

Iron-Sulfur ProteinsAnaerobic respirationFormatesCellular respirationSuccinic AcidAcetatesBiologymedicine.disease_causeColiphagesBiochemistryMicrobiologyGene Expression Regulation Enzymologicchemistry.chemical_compoundBioreactorsBacterial ProteinsMultienzyme ComplexesEscherichia coliGeneticsmedicineFormateAnaerobiosisMolecular BiologyEscherichia coliMixed acid fermentationAlcohol dehydrogenaseNitratesEthanolEthanolEscherichia coli ProteinsAlcohol DehydrogenaseGene Expression Regulation BacterialGeneral MedicineAldehyde OxidoreductasesAerobiosisArtificial Gene FusionOxygenRepressor ProteinsLac OperonchemistryBiochemistryFermentationLactatesbiology.proteinFermentationOxidoreductasesBacterial Outer Membrane ProteinsArchives of Microbiology
researchProduct